Digital Logic Design Combinational Logic Part 1

INTRODUCTION

Two classes of logic circuits

- Combinational Circuit

Each output depends entirely on the immediate (present) inputs.
\checkmark Gates
\checkmark Decoders, multiplexers
\checkmark Adders, multipliers

- Sequential Circuit
- Each output depends on both present inputs and state.
\checkmark Counters, registers
\checkmark Memories

Boolean Algebra

- Digital circuits are hardware components for processing (manipulation) of binary input
- They are built of transistors and interconnections in semiconductor devices called integrated circuits
- A basic circuit is called a logic gate; its function can be represented mathematically.

BOOLEAN ALGEBRA

-Boolean values:
True (1)
False (0)

- Truth tables

A	B	$A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

A	B	$A+B$
0	0	0
0	1	1
1	0	1
1	1	1

A	A^{\prime}
0	1
1	0

$\overline{\mathrm{A}}$

- Logic gates

Timing Diagram

A graphical representation Of the truth table!

Ahmad Almulhem, KFUPM 2010

Boolean Expression

- A Boolean expression is made of Boolean variables and constants combined with logical operators: AND, OR and NOT
- A literal is each instance of a variable or constant.
- Boolean expressions are fully defined by their truth tables
- A Boolean expression can be represented using interconnected logic gates
- Literals correspond to the input signals to the gates
- Constants (1 or 0) can also be input signals
- Operators of the expression are converted to logic gates
- Example: a ' $b d+b c d+a c^{\prime}+a^{\prime} d^{\prime}$ (4 variables, 10 literals, ?? gates)

Operator Precedence

Given a Boolean expression, the order of operations depends on the precedence rules given by:

1. Parenthesis

Highest Priority
2. NOT
3. AND
4. OR

Lowest Priority

- Example: XY + WZ will be evaluated as:

1. $X Y$
2. WZ
3. $X Y+W Z$

Example

$\mathrm{F}=\mathrm{X} .\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)$
This function has three inputs $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and the output is given by F
As can be seen, the gates needed to construct this circuit are: 2 input AND, 2 input OR and NOT

Example (Cont.)

A Boolean function can be represented with a truth table

$\mathrm{F}=\mathrm{X} \cdot\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)$					
X	Y	Z	Y^{\prime}	$\mathrm{Y}^{\prime}+\mathrm{Z}$	$\mathrm{F}=\mathrm{X} .\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)$
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1

Identities of Boolean Algebra

Basic Identities of Boolean Algebra

1.	$X+0=X$	2.	$X \cdot 1=X$	
3.	$X+1=1$	4.	$X \cdot 0=0$	
5.	$X+X=X$	6.	$X \cdot X=X$	
7.	$X+\bar{X}=1$	8.	$X \cdot \bar{X}=0$	
9. $\bar{X}=X$			Commutative	
10.	$X+Y=Y+X$	11.	$X Y=Y X$	Associative
12.	$X+(Y+Z)=(X+Y)+Z$	13.	$X(Y Z)=(X Y) Z$	Distributive
14.	$X(Y+Z)=X Y+X Z$	15.	$X+Y Z=(X+Y)(X+Z)$	DeMorgan's
16.	$\overline{X+Y}=\bar{X} \cdot \bar{Y}$	17. $\overline{X \cdot Y}=\bar{X}+\bar{Y}$		

DeMorgan's Theorem

$\overline{X+Y}=\bar{X} \bullet \bar{Y} \longleftrightarrow \overline{X \bullet Y}=\bar{X}+\bar{Y}$

Truth Tables to Verify DeMorgan's Theorem

A)	\mathbf{X}	\mathbf{Y}	$\mathbf{X}+\mathbf{Y}$	$\overline{\mathbf{X}+\mathbf{Y}}$	B)	\mathbf{X}	\mathbf{Y}	$\overline{\mathbf{X}}$	$\overline{\mathbf{Y}}$
0	0	0	1	$\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$					
0	1	1	0	0	0	1	1	1	
1	0	1	0	0	1	1	0	0	
1	1	1	0	1	0	0	1	0	

use truth tables to prove that two Boolean expressions are equal!

Extended DeMorgan's Theorem: $\overline{\boldsymbol{X}_{1}+X_{2}+\ldots .+X_{n}}=\bar{X}_{1} \cdot \bar{X}_{2} \ldots . . \bar{X}_{n}$ ${\overline{X_{1}} \boldsymbol{X}_{2} \ldots \boldsymbol{X}_{n}}=\bar{X}_{1}+\bar{X}_{2}+\ldots . \bar{X}_{n}$

Why Boolean Algebra?

- Boolean algebra identities and properties help reduce the size of expressions
- In effect, smaller sized expressions will require fewer logic gates for building the circuit
- As a result, less cost will be incurred for building simpler circuits
- The speed of simpler circuits is also high

Algebraic Manipulation (Example)

$F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$

(a) $\mathrm{F}=\overline{\mathrm{X}} \mathrm{YZ}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\mathrm{XZ}$

Algebraic Manipulation (Example)

$$
\begin{align*}
F & =X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z \\
& =X^{\prime} Y\left(Z+Z^{\prime}\right)+X Z \tag{id14}\\
& =X^{\prime} Y .1+X Z \tag{id7}\\
& =X^{\prime} Y+X Z \tag{id2}
\end{align*}
$$

(a) $\mathrm{F}=\overline{\mathrm{X}} \mathrm{YZ}+\overline{\mathrm{X}} \mathrm{Y} \bar{Z}+X Z$

(b) $F=\bar{X} Y+X Z$

Algebraic Manipulation (Example)

$$
\begin{array}{rlr}
F & =X^{\prime} Y Z+X^{\prime} Y Z '+X Z \\
& =X^{\prime} Y\left(Z+Z^{\prime}\right)+X Z & \text { (id 14) } \\
& =X^{\prime} Y .1+X Z & \text { (id 7) } \\
& =X^{\prime} Y+X Z & \text { (id 2) } \tag{id2}
\end{array}
$$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	(a) \mathbf{F}	(b) \mathbf{F}
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

(a) $\mathrm{F}=\overline{\mathrm{X}} \mathrm{YZ}+\bar{X} Y \bar{Z}+X Z$

(b) $F=\bar{X} Y+X Z$

Verify !

Example

Reduce $\mathrm{F} 1=(\mathrm{A}+\mathrm{B}+\mathrm{AB})(\mathrm{AB}+\mathrm{AC}+\mathrm{BC})$
Using DeMorgan's Theorem,

$$
\begin{aligned}
F 1 & =\left(A^{\prime} \cdot B \cdot\left(A^{\prime}+B^{\prime}\right)\right) \cdot\left(A^{\prime}+B^{\prime}\right) \cdot\left(A+C^{\prime}\right) \cdot\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} \cdot B \cdot A^{\prime}+A^{\prime} \cdot B \cdot B^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}\right)\left(A+C^{\prime}\right) \cdot\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} B+0\right) \cdot\left(A^{\prime}+B^{\prime}\right)\left(A+C^{\prime}\right) \cdot\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} B A^{\prime}+A^{\prime} B B^{\prime}\right)\left(A+C^{\prime}\right) \cdot\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} B\right)\left(A+C^{\prime}\right) \cdot\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} B A+A^{\prime} B C^{\prime}\right)\left(B^{\prime}+C^{\prime}\right) \\
& =\left(0+A^{\prime} B C^{\prime}\right)\left(B^{\prime}+C^{\prime}\right) \\
& =\left(A^{\prime} B C^{\prime} B^{\prime}+A^{\prime} B C^{\prime} C^{\prime}\right) \\
& =\left(0+A^{\prime} B C^{\prime}\right)=A^{\prime} B C^{\prime}
\end{aligned}
$$

Example

Simplify $G=((\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}) \cdot(\overline{\mathrm{AB}}+\overline{\mathrm{C}} \overline{\mathrm{D}})+(\overline{\mathrm{ACD}}))$
$=((\mathrm{A}+\mathrm{B}+\mathrm{C})+(\mathrm{AB} \cdot(\mathrm{C}+\mathrm{D}))) \cdot \mathrm{ACD}$
$=(A+B+C) \cdot A C D+(A B \cdot(C+D)) \cdot A C D$
$=(A C D+A B C D)+(A B C D+A B C D)$
$=(A C D+A C D(B+B)+A B C D)$
$=(A C D+A C D+A B C D)$
$=(A C D+A B C D)$
$=(\mathrm{ACD}(1+\mathrm{B}))$
= ACD

Minterms

- A product term is a term where literals are ANDed.
- Example: x'y', xz, xyz, ...
- A minterm is a product term in which all variables appear exactly once, in normal or complemented form
- Example: $F(x, y, z)$ has 8 minterms: x'y'z', $x^{\prime} y^{\prime} z, x^{\prime} y z^{\prime}, \ldots$
- In general, a function with n variables has 2^{n} minterms
- A minterm equals 1 at exactly one input combination and is equal to 0 otherwize
- Example: $x^{\prime} y^{\prime} z^{\prime}=1$ only when $x=0, y=0, z=0$
- A minterm is denoted as m_{i} where i corresponds the input combination at which this minterm is equal to 1

Minterms

Minterms for Three Variables
Src: Mano's book

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Product Term	Symbol	\mathbf{m}_{0}	\mathbf{m}_{1}	\mathbf{m}_{2}	\mathbf{m}_{3}	\mathbf{m}_{4}	\mathbf{m}_{5}	\mathbf{m}_{6}	\mathbf{m}_{7}
0	0	0	$\bar{X} \bar{Y} \bar{Z}$	$\mathrm{~m}_{0}$	1	0	0	0	0	0	0	0
0	0	1	$\bar{X} \bar{Y} \bar{Z}$	$\mathrm{~m}_{1}$	0	1	0	0	0	0	0	0
0	1	0	$\bar{X} Y \bar{Z}$	$\mathrm{~m}_{2}$	0	0	1	0	0	0	0	0
0	1	1	$\bar{X} Y \bar{Z}$	$\mathrm{~m}_{3}$	0	0	0	1	0	0	0	0
1	0	0	$X \bar{Y} \bar{Z}$	$\mathrm{~m}_{4}$	0	0	0	0	1	0	0	0
1	0	1	$X \bar{Y} \bar{Z}$	$\mathrm{~m}_{5}$	0	0	0	0	0	1	0	0
1	1	0	$X Y \bar{Z}$	$\mathrm{~m}_{6}$	0	0	0	0	0	0	1	0
1	1	1	$X Y Z$	$\mathrm{~m}_{7}$	0	0	0	0	0	0	0	1

Variable complemented if 0
m_{i} indicated the i^{th} minterm i indicates the binary combination m_{i} is equal to 1 for ONLY THAT combination

Maxterms

- A sum term is a term where literals are ORed.
- Example: $x^{\prime}+y^{\prime}, x+z, x+y+z, \ldots$
- A maxterm is a sum term in which all variables appear exactly once, in normal or complemented form
- Example: $F(x, y, z)$ has 8 maxterms: $(x+y+z),\left(x+y+z^{\prime}\right),(x+y$ ' $+z), \ldots$
- In general, a function with n variables has 2^{n} maxterms
- A maxterm equals 0 at exactly one input combination and is equal to 1 otherwize
- Example: $(x+y+z)=0$ only when $x=0, y=0, z=0$
- A maxterm is denoted as M_{i} where i corresponds the input combination at which this maxterm is equal to 0

Maxterms

Src: Mano's book
Maxterms for Three Variables

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Sum Term	Symbol	$\mathbf{M}_{\mathbf{0}}$	\mathbf{M}_{1}	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	\mathbf{M}_{4}	$\mathbf{M}_{\mathbf{5}}$	\mathbf{M}_{6}	\mathbf{M}_{7}
0	0	0	$X+Y+Z$	\mathbf{M}_{0}	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\bar{Z}$	\mathbf{M}_{1}	1	0	1	1	1	1	1	1
0	1	0	$X+\bar{Y}+Z$	\mathbf{M}_{2}	1	1	0	1	1	1	1	1
0	1	1	$X+\bar{Y}+\bar{Z}$	M_{3}	1	1	1	0	1	1	1	1
1	0	0	$\bar{X}+Y+\bar{Z}$	M_{4}	1	1	1	1	0	1	1	1
1	0	1	$\bar{X}+Y+\bar{Z}$	M_{5}	1	1	1	1	1	0	1	1
1	1	0	$\bar{X}+\bar{Y}+\underline{Z}$	\mathbf{M}_{6}	1	1	1	1	1	1	0	1
1	1	1	$\bar{X}+\bar{Y}+\bar{Z}$	\mathbf{M}_{7}	1	1	1	1	1	1	1	0

Variable complemented if 1
M_{i} indicated the $\mathrm{i}^{\text {th }}$ maxterm i indicates the binary combination M_{i} is equal to 0 for ONLY THAT combination

Minterms and Maxterms

In general, a function of n variables has

- 2^{n} minterms: $\mathrm{m}_{0}, \mathrm{~m}_{1}, \ldots, \mathrm{~m}_{2^{n}-1}$
- 2^{n} maxterms: $\mathrm{M}_{0}, \mathrm{M}_{1}, \ldots, \mathrm{M}_{2}{ }^{\mathrm{n}}{ }^{-1}$

Minterms and maxterms are the complement of each other!

$$
\boldsymbol{M}_{i}=\overline{\boldsymbol{m}}_{i} \quad \forall i=0,1,2, \ldots .,\left(2^{n}-1\right)
$$

Example: $\mathrm{F}(\mathrm{X}, \mathrm{Y})$:

$$
m_{2}=X Y^{\prime} \rightarrow m_{2}^{\prime}=X^{\prime}+Y=M_{2}
$$

Expressing Functions with Minterms

- A Boolean function can be expressed algebraically from a give truth table by forming the logical sum (OR) of ALL the minterms that produce 1 in the function

Example:

Consider the function defined by the truth table

$$
\begin{aligned}
F(X, Y, Z) & =X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z+X Y Z \\
& =m_{0}+m_{2}+m_{5}+m_{7} \\
& =\Sigma m(0,2,5,7)
\end{aligned}
$$

X	Y	Z	m	F
0	0	0	$\mathrm{~m}_{0}$	1
0	0	1	$\mathrm{~m}_{1}$	0
0	1	0	$\mathrm{~m}_{2}$	1
0	1	1	$\mathrm{~m}_{3}$	0
1	0	0	$\mathrm{~m}_{4}$	0
1	0	1	$\mathrm{~m}_{5}$	1
1	1	0	$\mathrm{~m}_{6}$	0
1	1	1	$\mathrm{~m}_{7}$	1

Expressing Functions with Maxterms

- A Boolean function can be expressed algebraically from a give truth table by forming the logical product (AND) of ALL the maxterms that produce 0 in the function

Example:

Consider the function defined by the truth table $F(X, Y, Z)=\Pi M(1,3,4,6)$

Applying DeMorgan

$$
\begin{aligned}
\mathrm{F}^{\prime} \quad & =\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{6} \\
= & \Sigma \mathrm{m}(1,3,4,6) \\
\mathrm{F}=\mathrm{F}^{\prime \prime} & =\left[\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{6}\right]^{\prime} \\
& =\mathrm{m}_{1}^{\prime} \cdot \mathrm{m}_{3}^{\prime} \cdot \mathrm{m}_{4}^{\prime} \cdot \mathrm{m}_{6}^{\prime} \\
& =\mathrm{M}_{1} \cdot \mathrm{M}_{3} \cdot \mathrm{M}_{4} \cdot \mathrm{M}_{6} \\
& =\Pi M(1,3,4,6)
\end{aligned}
$$

X	Y	Z	M	F	F^{\prime}
0	0	0	M_{0}	1	0
0	0	1	M_{1}	0	1
0	1	0	M_{2}	1	0
0	1	1	M_{3}	0	1
1	0	0	M_{4}	0	1
1	0	1	M_{5}	1	0
1	1	0	M_{6}	0	1
1	1	1	M_{7}	1	0

Sum of Minterms vs Product of Maxterms

- A Boolean function can be expressed algebraically as:
- The sum of minterms
- The product of maxterms
- Given the truth table, writing F as
- $\sum m_{i}$ - for all minterms that produce 1 in the table, or
- ΠM_{i} - for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example

- Write $E=Y^{\prime}+X^{\prime} Z^{\prime}$ in the form of Σm_{i} and ΠM_{i} ?
- Solution: Method1

First construct the Truth
Table as shown
Second:
$E=\Sigma m(0,1,2,4,5)$, and
$E=\Pi M(3,6,7)$

X	Y	Z	m	M	E
0	0	0	$\mathrm{~m}_{0}$	M_{0}	1
0	0	1	$\mathrm{~m}_{1}$	M_{1}	1
0	1	0	$\mathrm{~m}_{2}$	M_{2}	1
0	1	1	$\mathrm{~m}_{3}$	M_{3}	0
1	0	0	$\mathrm{~m}_{4}$	M_{4}	1
1	0	1	$\mathrm{~m}_{5}$	M_{5}	1
1	1	0	$\mathrm{~m}_{6}$	M_{6}	0
1	1	1	$\mathrm{~m}_{7}$	M_{7}	0

Example (Cont.)

Solution: Method2 a

$$
\begin{aligned}
\mathrm{E} & =Y^{\prime}+X^{\prime} Z^{\prime} \\
& =Y^{\prime}\left(X+X^{\prime}\right)\left(Z+Z^{\prime}\right)+X^{\prime} Z^{\prime}\left(Y+Y^{\prime}\right) \\
& =\left(X Y^{\prime}+X^{\prime} Y^{\prime}\right)\left(Z+Z^{\prime}\right)+X^{\prime} Y Z^{\prime}+X^{\prime} Z^{\prime} Y^{\prime} \\
& =X Y^{\prime} Z+X^{\prime} Y^{\prime} Z+X Y^{\prime} Z^{\prime}+X^{\prime} Y^{\prime} Z^{\prime}+ \\
& X^{\prime} Y Z^{\prime}+X^{\prime} Z^{\prime} Y^{\prime} \\
& =m_{5}+m_{1}+m_{4}+m_{0}+m_{2}+m_{0} \\
& =m_{0}+m_{1}+m_{2}+m_{4}+m_{5} \\
& =\Sigma m(0,1,2,4,5)
\end{aligned}
$$

Solution: Method2 b

$$
E=Y^{\prime}+X^{\prime} Z^{\prime}
$$

$$
E^{\prime}=Y(X+Z)
$$

$$
=Y X+Y Z
$$

$$
=Y X\left(Z+Z^{\prime}\right)+Y Z\left(X+X^{\prime}\right)
$$

= XYZ+XYZ'+X'YZ

$$
=m_{5}+m_{1}+m_{4}+m_{0}+m_{2}+m_{0} E=\left(X^{\prime}+Y^{\prime}+Z^{\prime}\right)\left(X^{\prime}+Y^{\prime}+Z\right)\left(X+Y^{\prime}+Z^{\prime}\right)
$$

$$
=M_{7} \cdot M_{6} \cdot M_{3}
$$

$$
=\text { ПМ }(3,6,7)
$$

To find the form ПМі, consider the remaining indices

$$
\text { E = ПМ }(3,6,7)
$$

To find the form $\Sigma \mathrm{m}_{\mathrm{i}}$, consider the remaining indices

$$
E=\Sigma m(0,1,2,4,5)
$$

Example

Question: $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,1,2,4,5,7)$, What are the minterms and maxterms of F and and its complement $\overline{\mathrm{F}}$?

Solution:

F has 4 variables; $2^{4}=16$ possible minterms/maxterms

$$
\begin{aligned}
F(a, b, c, d)= & \sum m(0,1,2,4,5,7) \\
& =\Pi M(3,6,8,9,10,11,12,13,14,15) \\
\bar{F}(a, b, c, d)= & \sum m(3,6,8,9,10,11,12,13,14,15) \\
& =\Pi M(0,1,2,4,5,7)
\end{aligned}
$$

Canonical Forms

The sum of minterms and the product of maxterms forms are known as the canonical forms (الصيغ القانونية) of a function.

Standard Forms

- Sum of Products (SOP) and Product of Sums (POS) are also standard forms - $A B+C D=(A+C)(B+C)(A+D)(B+D)$
- The sum of minterms is a special case of the SOP form, where all product terms are minterms
- The product of maxterms is a special case of the POS form, where all sum terms are maxterms

SOP and POS Conversion

SOP \rightarrow POS

$$
\begin{aligned}
F & =A B+C D \\
& =(A B+C)(A B+D) \\
& =(A+C)(B+C)(A B+D) \\
& =(A+C)(B+C)(A+D)(B+D)
\end{aligned}
$$

Hint 1: Use $X+Y Z=(X+Y)(X+Z)$
Hint 2: Factor

POS \rightarrow SOP

$$
\begin{aligned}
F & =\left(A^{\prime}+B\right)\left(A^{\prime}+C\right)(C+D) \\
& =\left(A^{\prime}+B C\right)(C+D) \\
& =A^{\prime} C+A^{\prime} D+B C C+B C D \\
& =A^{\prime} C+A^{\prime} D+B C+B C D \\
& =A^{\prime} C+A^{\prime} D+B C
\end{aligned}
$$

Hint 1: Use $i(X+Y)(X+Z)=X+Y Z$
Hint 2: Multiply

Question1: How to convert SOP to sum of minterms? Question2: How to convert POS to product of maxterms?

Implementation of SOP

Any SOP expression can be implemented using a 2-levels of gates
The $1^{\text {st }}$ level consists of AND gates, and the $2^{\text {nd }}$ level consists of a single OR gate
Also called 2-level Circuit

Level 1

Two-Level Implementation ($\mathrm{F}=\mathrm{XZ}+\mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{YZ}$) Level-1: AND-Gates ; Level-2: One OR-Gate

Implementation of POS

Any POS expression can be implemented using a 2-levels of gates
The $1^{\text {st }}$ level consists of OR gates, and the $2^{\text {nd }}$ level consists of a single AND gate
Also called 2-level Circuit

Level 1

Two-Level Implementation $\left\{\mathrm{F}=(\mathrm{X}+\mathrm{Z})\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)(\mathrm{X}+\mathrm{Y}+\mathrm{Z})\right\}$
Level-1: OR-Gates ; Level-2: One AND-Gate

Implementation of SOP

- Consider $F=A B+C(D+E)$
- This expression is NOT in the sum-of-products form
- Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in $F=A B+C D+C E$
- Logic Diagrams:

