Digital Logic Design Combinational Logic Part 1

INTRODUCTION

Two classes of logic circuits

Combinational Circuit

Each output depends entirely on the immediate (present) inputs.

✓ Gates

inputs :

✓ Decoders, multiplexers

Combinational

Logic

outputs

✓ Adders, multipliers

- Each output depends on both present inputs and state.
- Counters, registers
- Memories

Boolean Algebra

- Digital circuits are hardware components for processing (manipulation) of binary input
- They are built of transistors and interconnections in semiconductor devices called integrated circuits
- A basic circuit is called a logic gate; its function can be represented mathematically.

BOOLEAN ALGEBRA

Boolean values:

Truth tables

True (1) False (0)

Α'

Logic gates

Ā

В

Timing Diagram

Ahmad Almulhem, KFUPM 2010

Boolean Expression

- <u>A Boolean expression</u> is made of Boolean variables and constants combined with logical operators: AND, OR and NOT
- A literal is each instance of a variable or constant.
- Boolean expressions are fully defined by their truth tables
- A Boolean expression can be represented using interconnected logic gates
 - Literals correspond to the input signals to the gates
 - Constants (1 or 0) can also be input signals
 - Operators of the expression are converted to logic gates
- Example: *a'bd + bcd + ac' + a'd'* (4 variables, 10 literals, ?? gates)

Operator Precedence

- Given a Boolean expression, the order of operations depends on the precedence rules given by:
 - 1. Parenthesis Highest Priority
 - 2. NOT
 - 3. AND
 - 4. OR Lowest Priority
- Example: XY + WZ will be evaluated as:
 - 1. XY
 - 2. WZ
 - 3. XY + WZ

Example

- $\mathsf{F}=\mathsf{X} \mathrel{.} (\mathsf{Y}'+\mathsf{Z})$
 - This function has three inputs X, Y, Z and the output is given by F
 - As can be seen, the gates needed to construct this circuit are: 2 input AND, 2 input OR and NOT

Example (Cont.)

A Boolean function can be represented with a truth table

F = X . (Y' + Z)								
Х	Y	Z	Y'	Y' + Z	F=X.(Y'+Z)			
0	0	0	1	1	0			
0	0	1	1	1	0			
0	1	0	0	0	0			
0	1	1	0	1	0			
1	0	0	1	1	1			
1	0	1	1	1	1			
1	1	0	0	0	0			
1	1	1	0	1	1			

Identities of Boolean Algebra

B	asic Identities of Boolean Alge	ebra		
1.	X + 0 = X	2.	$X \cdot 1 = X$	
3.	X + 1 = 1	4.	$X \cdot 0 = 0$	
5.	X + X = X	6.	$X \cdot X = X$	
7.	$X + \overline{X} = 1$	8.	$X \cdot \overline{X} = 0$	
9.	$\overline{\overline{X}} = X$			
10.	X + Y = Y + X	11.	XY = YX	Commutative
12.	X + (Y + Z) = (X + Y) + Z	13.	X(YZ) = (XY)Z	Associative
14.	X(Y+Z) = XY + XZ	15.	X + YZ = (X + Y)(X + Z)	Distributive
16.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17.	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$	DeMorgan's

src: Mano's Textbook

DeMorgan's Theorem

 $X + Y = X \bullet Y \longleftrightarrow X \bullet Y = X + Y$

Truth Tables to Verify DeMorgan's Theorem

A)	Х	Υ	$\mathbf{X} + \mathbf{Y}$	$\overline{X + Y}$	B)	х	Y	X	Y	$\overline{X}\cdot\overline{Y}$
	0	0	0	1		0	0	1	1	1
	0	1	1	0		0	1	1	0	0
	1	0	1	0		1	0	0	1	0
	1	1	1	0		1	1	0	0	0

use truth tables to prove that two Boolean expressions are equal !

Extended DeMorgan's Theorem: $X_1 + X_2 + \dots + X_n = X_1 \cdot X_2 \cdot \dots \cdot X_n$

$$\overline{X_1 X_2 \dots X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

Why Boolean Algebra?

- Boolean algebra identities and properties help reduce the size of expressions
- In effect, smaller sized expressions will require fewer logic gates for building the circuit
- As a result, less cost will be incurred for building simpler circuits
- The speed of simpler circuits is also high

Algebraic Manipulation (Example)

Algebraic Manipulation (Example)

Ahmad Almulhem, KFUPM 2010

Algebraic Manipulation (Example)

Ahmad Almulhem, KFUPM 2010

Example

Reduce F1=(A + B + AB) (AB + AC + BC) Using DeMorgan's Theorem,

F1 = (A'.B.(A'+B')).(A'+B').(A+C').(B'+C')

= (A'.B.A' + A'.B.B').(A'+B')(A+C').(B'+C')

- = (A'B + 0).(A'+B')(A+C').(B'+C')
- = (A'BA' + A'BB') (A+C') .(B'+C')
- = (A'B) (A+C') .(B'+C')
- = (A'BA+A'BC')(B'+C')
- = (0+A'BC')(B'+C')
- = (A'BC'B' + A'BC'C')
- = (0 + A'BC') = A'BC'

= <u>ACD</u>

- = (ACD(1+B))
- = (ACD + ABCD)
- = (ACD + ACD + ABCD)
- = (ACD + ACD(B+B) + ABCD)
- = (ACD+ABCD) + (ABCD+ABCD)
- $= (A+\overline{B}+C).ACD + (AB.(C+D)).ACD$
- $= ((A+\overline{B}+C)+(AB.(C+D))).ACD$
- Simplify G = ((A+B+C).(AB+CD)+(ACD))

Example

Minterms

- A product term is a term where literals are ANDed.
 - Example: x'y', xz, xyz, ...
- A <u>minterm</u> is a product term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 minterms: x'y'z', x'y'z, x'yz', ...
- In general, a function with n variables has 2ⁿ minterms
- A minterm equals 1 at exactly one input combination and is equal to 0 otherwize
 - Example: x'y'z' = 1 only when x=0, y=0, z=0
- A minterm is denoted as m_i where i corresponds the input combination at which this minterm is equal to 1

Minterms

Minterms for Three Variables

Src: Mano's book

x	Y	z	Product Term	Symbol	m _o	m ₁	m ₂	m ₃	m₄	m₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m ₀	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m ₂	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m ₆	0	0	0	0	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1
	m _i indicated the i th minterm											
Varia Varia	/ariable complemented if 0 /ariable uncomplemented if 1											

Maxterms

- A **<u>sum term</u>** is a term where literals are ORed.
 - Example: x'+y', x+z, x+y+z, ...
- A <u>maxterm</u> is a sum term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 maxterms: (x+y+z), (x+y+z'), (x+y'+z), ...
- In general, a function with n variables has 2ⁿ maxterms
- A maxterm equals 0 at exactly one input combination and is equal to 1 otherwize
 - Example: (x+y+z) = 0 only when x=0, y=0, z=0
- A maxterm is denoted as M_i where i corresponds the input combination at which this maxterm is equal to 0

Maxterms

Src: Mano's book

Maxterms for Three Variables

X	Υ	Ζ	Sum Term	Symb	ol M _o	M ₁	M_2	M_3	M_4	M_5	M_6	M ₇
0	0	0	X + Y + Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X + Y + \overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M ₆	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0
	M _i indicated the i th maxterm											
Variable complemented if 1 Variable not complemented if 0												

Minterms and Maxterms

In general, a function of n variables has

- 2ⁿ minterms: m₀, m₁, ..., m_{2ⁿ-1}
- 2ⁿ maxterms: M₀, M₁, ..., M_{2ⁿ-1}

Minterms and maxterms are the complement of each other!

$$M_i = \overline{m_i}$$
 $\forall i = 0, 1, 2, \dots, (2^n - 1)$

Example: F(X,Y):

$$m_2 = XY' \rightarrow m_2' = X'+Y = M_2$$

Expressing Functions with Minterms

 A Boolean function can be expressed algebraically from a give truth table by forming the logical sum (OR) of ALL the minterms that produce 1 in the function

Example:

Consider the function defined by the truth table

$$F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ = m_0 + m_2 + m_5 + m_7 = \Sigma m(0,2,5,7)$$

Х	Y	Ζ	m	F
0	0	0	m ₀	1
0	0	1	m_1	0
0	1	0	m ₂	1
0	1	1	m ₃	0
1	0	0	m ₄	0
1	0	1	m ₅	1
1	1	0	m ₆	0
1	1	1	m_7	1

Expressing Functions with Maxterms

• A Boolean function can be expressed algebraically from a give truth table by forming the logical product (AND) of ALL the maxterms that produce 0 in the function

Example:	Х	Y	Ζ	М	F	F′
Consider the function defined by the truth table	0	0	0	M ₀	1	0
$F(X,Y,Z) = \prod M(1,3,4,6)$	0	0	1	M_1	0	1
	0	1	0	M_2	1	0
Applying DeMorgan	0	1	1	M_3	0	1
$F' = m_1 + m_3 + m_4 + m_6$	1	0	0	M4	0	1
$= \Sigma m(1,3,4,6)$	1	0	1	Μ ₅	1	0
$F = F'' = [m_1 + m_3 + m_4 + m_6]'$	1	1	0	M_6	0	1
$= m_1' \cdot m_3' \cdot m_4' \cdot m_6'$	1	1	1	M_7	1	0
$= M_1.M_3.M_4.M_6$						
$= \prod M(1,3,4,6) \text{Note the indices in the provided of the indices in the provided of the $	this list	are tho	se that	are		
missing from the pr	evious	iist in 2	m(0,2,5)	, ()		

Sum of Minterms vs Product of Maxterms

- A Boolean function can be expressed algebraically as:
 - The sum of minterms
 - The product of maxterms
- Given the truth table, writing F as
 - $\sum_{i=1}^{\infty} m_i$ for all minterms that produce 1 in the table, or
 - ΠM_i for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example

- Write E = Y' + X'Z' in the form of Σm_i and ΠM_i ?
- Solution: <u>Method1</u>
 First construct the Truth Table as shown
 Second:
 E = Σm(0,1,2,4,5), and
- $E = \Pi M(3, 6, 7)$

Х	Y	Ζ	m	М	Е
0	0	0	m ₀	M ₀	1
0	0	1	m_1	M_1	1
0	1	0	m ₂	M ₂	1
0	1	1	m ₃	M_3	0
1	0	0	m ₄	M4	1
1	0	1	m ₅	M_5	1
1	1	0	m_6	M_6	0
1	1	1	m_7	M_7	0

Example (Cont.)

Solution: <u>Method2 a</u>

E = Y' + X'Z'= Y'(X+X')(Z+Z') + X'Z'(Y+Y')= (XY'+X'Y')(Z+Z') + X'YZ= XY'Z + X'Y'Z + XY'Z' + X'Y'Z' +X'Y7'+X'7'Y' $= m_5 + m_1 + m_4 + m_0 + m_2 + m_0 F$

 $= m_0 + m_1 + m_2 + m_4 + m_5$ $= \Sigma m(0,1,2,4,5)$

To find the form Π Mi, consider the remaining indices $E = \prod M(3, 6, 7)$

To find the form Σm_i , consider the remaining indices $E = \Sigma m(0, 1, 2, 4, 5)$

Solution: <u>Method2</u> b E = Y' + X'Z'E' = Y(X+Z)YX + YZ= YX(Z+Z') + YZ(X+X') = XYZ+XYZ'+X'YZ ⊦Z′)

$$= M_7 \cdot M_6 \cdot M_3$$

= $\Pi M(3,6,7)$

Example

Question: F (a,b,c,d) = $\sum m(0,1,2,4,5,7)$, What are the _____ minterms and maxterms of F and and its complement F? **Solution:**

F has 4 variables; $2^4 = 16$ possible minterms/maxterms

F (a,b,c,d) =
$$\sum m(0,1,2,4,5,7)$$

= $\prod M(3,6,8,9,10,11,12,13,14,15)$

$$F (a,b,c,d) = \sum m(3,6,8,9,10,11,12,13,14,15) = \Pi M(0,1,2,4,5,7)$$

Canonical Forms

The sum of minterms and the product of maxterms forms are known as the <u>canonical forms</u> (الصيغ القانونية) of a function.

Standard Forms

- Sum of Products (SOP) and Product of Sums (POS) are also standard forms
 - AB+CD = (A+C)(B+C)(A+D)(B+D)
- The sum of minterms is a special case of the SOP form, where all product terms are minterms
- The product of maxterms is a special case of the POS form, where all sum terms are maxterms

SOP and POS Conversion

 $SOP \rightarrow POS$ $POS \rightarrow SOP$

F = AB + CD

- = (AB+C)(AB+D)
- = (A+C)(B+C)(AB+D)
- = (A+C)(B+C)(A+D)(B+D)

Hint 1: Use X+YZ=(X+Y)(X+Z)

Hint 2: Factor

- F = (A'+B)(A'+C)(C+D)
 - = (A'+BC)(C+D)
 - = A'C+A'D+BCC+BCD
 - = A'C+A'D+BC+BCD
 - = A'C+A'D+BC

Hint 1: Use i (X+Y)(X+Z)=X+YZ

Hint 2: Multiply

Question1: How to convert SOP to sum of minterms? Question2: How to convert POS to product of maxterms?

Implementation of SOP

Any SOP expression can be implemented using a

2-levels of gates

The 1st level consists of AND gates, and the 2nd level consists of a single OR gate

Also called 2-level Circuit

Two-Level Implementation (F = XZ + Y^{*}Z + X^{*}YZ) Level-1: AND-Gates ; Level-2: One OR-Gate

Implementation of POS

Any POS expression can be implemented using a 2-levels of gates

The 1st level consists of OR gates, and the 2nd level consists of a single AND gate

Also called 2-level Circuit

Two-Level Implementation {F = (X+Z)(Y+Z)(X+Y+Z)} Level-1: OR-Gates ; Level-2: One AND-Gate

Implementation of SOP

- Consider F = AB + C(D+E)
 - This expression is NOT in the sum-of-products form
 - Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in F = AB + CD + CE
- Logic Diagrams:

